Scanning Electron Microscopy and Energy-Dispersive X-Ray Microanalysis of Set CEM Cement after Application of Different Bleaching Agents
نویسندگان
چکیده
INTRODUCTION The present study evaluated the element distribution in completely set calcium-enriched mixture (CEM) cement after application of 35% carbamide peroxide, 40% hydrogen peroxide and sodium perborate as commercial bleaching agents using an energy-dispersive x-ray microanalysis (EDX) system. The surface structure was also observed using the scanning electron microscope (SEM). METHODS AND MATERIALS Twenty completely set CEM cement samples, measuring 4×4 mm2, were prepared in the present in vitro study and randomly divided into 4 groups based on the preparation technique as follows: the control group; 35% carbamide peroxide group in contact for 30-60 min for 4 times; 40% hydrogen peroxide group with contact time of 15-20 min for 3 times; and sodium perborate group, where the powder and liquid were mixed and placed on CEM cement surface 4 times. Data were analyzed at a significance level of 0.05 through the one Way ANOVA and Tukey's post hoc tests. RESULTS EDX showed similar element distribution of oxygen, sodium, calcium and carbon in CEM cement with the use of carbamide peroxide and hydroxide peroxide; however, the distribution of silicon was different (P<0.05). In addition, these bleaching agents resulted in significantly higher levels of oxygen and carbon (P<0.05) and a lower level of calcium (P<0.05) compared to the control group. SEM of the control group showed plate-like and globular structure. Sodium perborate was similar to control group due to its weak oxidizing properties. Globular structures and numerous woodpecker holes were observed on the even surface on the carbamide peroxide group. CONCLUSION The mean elemental distribution of completely set CEM cement was different when exposed to sodium perborate, carbamide peroxide and hydrogen peroxide.
منابع مشابه
Surface changes of mineral trioxide aggregate after the application of bleaching agents: electron microscopy and an energy-dispersive X-ray microanalysis.
INTRODUCTION The aim of this study was to investigate the changes in the surface structure and chemical composition after applying bleaching agents to completely hardened mineral trioxide aggregate. METHODS A total of 12 samples of MTA blocks were divided into three groups, two different bleaching agents, and a control group. The surface structure was observed using a scanning electron micros...
متن کاملEffect of bleaching agents having a neutral pH on the surface of mineral trioxide aggregate using electron microscopy and energy dispersive X-ray microanalysis
AIM To investigate the effect of bleaching agents having a neutral pH on the surface of mineral trioxide aggregate (MTA) used as a coronal seal material for nonvital bleaching, beneath the bleaching agent, with the help of energy dispersive X-ray microanalysis and scanning electron microscopy (SEM). MATERIALS AND METHODS Six samples of plastic tubes filled with white MTA (Angelus white) were ...
متن کاملSynthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors
Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...
متن کاملSynthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors
Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400, 500, and 600°C. It has also been found that the reaction temperature pla...
متن کاملBarriers to Quantitative Electron Probe X-Ray Microanalysis for Low Voltage Scanning Electron Microscopy
Low voltage x-ray microanalysis, defined as being performed with an incident beam energy ≤5 keV, can achieve spatial resolution, laterally and in depth, of 100 nm or less, depending on the exact selection of beam energy and the composition of the target. The shallow depth of beam penetration, with the consequent short path length for x-ray absorption, and the low overvoltage, the ratio of beam ...
متن کامل